Finite Element Solution of Optimal Control Problems Arising in Semiconductor Modeling
نویسندگان
چکیده
Optimal design, parameter estimation, and inverse problems arising in the modeling of semiconductor devices lead to optimization problems constrained by systems of PDEs. We study the impact of different state equation discretizations on optimization problems whose objective functionals involve flux terms. Galerkin methods, in which the flux is a derived quantity, are compared with mixed Galerkin discretizations where the flux is approximated directly. Our results show that the latter approach leads to more robust and accurate solutions of the optimization problem, especially for highly heterogeneous materials with large jumps in material properties.
منابع مشابه
Significant Error Propagation in the Finite Difference Solution of Non-Linear Magnetostatic Problems Utilizing Boundary Condition of the Third Kind
This paper poses two magnetostatic problems in cylindrical coordinates with different permeabilities for each region. In the first problem the boundary condition of the second kind is used while in the second one, the boundary condition of the third kind is utilized. These problems are solved using the finite element and finite difference methods. In second problem, the results of the finite di...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملLeast-Squares Finite Element Methods for Optimality Systems Arising in Optimization and Control Problems
The approximate solution of optimization and optimal control problems for systems governed by linear, elliptic partial differential equations is considered. Such problems are most often solved using methods based on applying the Lagrange multiplier rule to obtain an optimality system consisting of the state system, an adjoint-state system, and optimality conditions. Galerkin methods applied to ...
متن کاملDynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle
In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many diffic...
متن کاملReduction strategies for PDE-constrained optimization problems in haemodynamics
Solving optimal control problems for many different scenarios obtained by varying a set of parameters in the state system is a computationally extensive task. In this paper we present a new reduced framework for the formulation, the analysis and the numerical solution of parametrized PDE-constrained optimization problems. This framework is based on a suitable saddle-point formulation of the opt...
متن کامل